Spectral Viscosity for Shallow Water Equations in Spherical Geometry

نویسندگان

  • ANNE GELB
  • JAMES P. GLEESON
چکیده

A spherical spectral viscosity operator is proposed as an alternative to standard horizontal diffusion terms in global atmospheric models. Implementation in NCAR’s Spectral Transform Shallow Water Model and application to a suite of standard test cases demonstrates improvement in resolution and numerical conservation of invariants at no extra computational cost. The retention in the spectral viscosity solution of high-wavenumber information allows the successful application of high-resolution postprocessing methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-lagrangian Transport Algorithms for the Shallow Water Equations in Spherical Geometry

Global atmospheric circulation models (GCM) typically have three primary algorithmic components: columnar physics, spectral tran-form, and semi-Lagrangian transport. In this study, several varients of a SLT method are studied in the context of test cases for the shallow water equations in spherical geometry. A grid point formulation is used with implicit, semi-implicit or explicit time integrat...

متن کامل

A spectral element shallow water model on spherical geodesic grids

The spectral element method for the two-dimensional shallow water equations on the sphere is presented. The equations are written in conservation form and the domains are discretized using quadrilateral elements obtained from the generalized icosahedral grid introduced previously (Giraldo FX. Lagrange– Galerkin methods on spherical geodesic grids: the shallow water equations. Journal of Computa...

متن کامل

Thermomechanical Buckling of Simply Supported Shallow FGM Spherical Shells with Temperature dependent Material

The thermomechanical buckling of simply supported thin shallow spherical shells made of functionally graded material is presented in this paper. A metal-ceramic functionally graded shell with a power law distribution for volume fraction is considered, where its properties vary gradually through the shell thickness direction from pure metal on the inner surface to pure ceramic on the outer surfa...

متن کامل

Buckling Analysis of Functionally Graded Shallow Spherical Shells Under External Hydrostatic Pressure

The aim of this paper is to determine the critical buckling load for simply supported thin shallow spherical shells made of functionally graded material (FGM) subjected to uniform external pressure. A metal-ceramic functionally graded (FG) shell with a power law distribution for volume fraction is considered, where its properties vary gradually through the shell thickness direction from pure me...

متن کامل

A Radial Basis Function Method for the Shallow Water Equations on a Sphere

The paper derives the first known numerical shallow water model on the sphere using radial basis function (RBF) spatial discretisation, a novel numerical methodology that does not require any grid or mesh. In order to perform a study with regard to its spatial and temporal errors, two nonlinear test cases with known analytical solutions are considered. The first is global steady-state flow with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001